Similarly, a new submarine HVDC interconnector between Spain and France will ease the transmission of Spanish renewable electricity to central and northern Europe.
These projects highlight a crucial aspect: increasing the flexibility of the entire power systems necessitates enhanced flexibility within the grids themselves.
Traditionally, AC power lines distribute electricity following the path of least impedance. However, the future power systems will require power transmission into new directions. For instance, Germany has historically been a net electricity exporter to southern Europe. But with the expected surge in solar and wind generation capacity around the Mediterranean, there will be a significant shift in electricity flow from south to north.
In the evolving energy landscape, dynamic and flexible power flow control through technologies based on advanced power electronics will become increasingly essential. HVDC technology plays a crucial role in modernizing power grids, efficiently controlling and routing the flow of electrons where needed, thereby optimizing electricity transmission, and minimizing the curtailment of renewable energy.
Digitalization is fundamental in advancing power system flexibility
Overarching all of these changes is digitalization, which is one of the key enablers of a flexible low-carbon power system. Without high-speed computers, signal detection, data collection and usage by smart algorithms, and a capable and secure communication system, we won’t be able to move forward with the energy transition. Digitalization provides us with better accuracy, insights and control over the energy market and leads the industry to greater autonomy.
Digitalization is also the glue that fuses all flexibility technologies that the future low-carbon electricity system needs. It helps orchestrate each piece of the puzzle, such as battery storage, interconnectors, or demand-side response tools, which all add their own value within the coordinated power system. We need the help of digital tools at various stages within the transition to a low-carbon electricity system: to plan the most efficient power system, to forecast its needs in terms of supply and demand, and to monitor operations in real time so as to best react to unforeseen circumstances. It is vital for TSOs to invest in the cutting-edge digital tools that maximize the efficiency of all available flexibility solutions.